Source code for pints._optimisers._xnes

#
# Exponential natural evolution strategy optimizer: xNES
#
# This file is part of PINTS (https://github.com/pints-team/pints/) which is
# released under the BSD 3-clause license. See accompanying LICENSE.md for
# copyright notice and full license details.
#
# Some code in this file was adapted from Myokit (see http://myokit.org)
#
import numpy as np
import pints
import scipy
import scipy.linalg
import warnings


[docs]class XNES(pints.PopulationBasedOptimiser): """ Finds the best parameters using the xNES method described in [1]_, [2]_. xNES stands for Exponential Natural Evolution Strategy, and is designed for non-linear derivative-free optimization problems [1]_. Extends :class:`PopulationBasedOptimiser`. References ---------- .. [1] Glasmachers, Schaul, Schmidhuber et al. (2010) "Exponential natural evolution strategies". Proceedings of the 12th annual conference on Genetic and evolutionary computation. https://doi.org/10.1145/1830483.1830557 .. [2] PyBrain: The Python machine learning library http://pybrain.org """ def __init__(self, x0, sigma0=None, boundaries=None): super(XNES, self).__init__(x0, sigma0, boundaries) # Set initial state self._running = False self._ready_for_tell = False # Best solution found self._xbest = pints.vector(x0) self._fbest = float('inf')
[docs] def ask(self): """ See :meth:`Optimiser.ask()`. """ # Initialise on first call if not self._running: self._initialise() # Ready for tell now self._ready_for_tell = True # Create new samples (normalised, and user values) self._zs = np.array([np.random.normal(0, 1, self._n_parameters) for i in range(self._population_size)]) self._xs = np.array([self._mu + np.dot(self._A, self._zs[i]) for i in range(self._population_size)]) # Create safe xs to pass to user if self._boundary_transform is not None: # Rectangular boundaries? Then perform boundary transform self._xs = self._boundary_transform(self._xs) if self._manual_boundaries: # Manual boundaries? Then pass only xs that are within bounds self._user_ids = np.nonzero( [self._boundaries.check(x) for x in self._xs]) self._user_xs = self._xs[self._user_ids] if len(self._user_xs) == 0: # pragma: no cover warnings.warn( 'All points requested by XNES are outside the boundaries.') else: self._user_xs = self._xs # Set as read-only and return self._user_xs.setflags(write=False) return self._user_xs
[docs] def fbest(self): """ See :meth:`Optimiser.fbest()`. """ return self._fbest
def _initialise(self): """ Initialises the optimiser for the first iteration. """ assert(not self._running) # Create boundary transform, or use manual boundary checking self._manual_boundaries = False self._boundary_transform = None if isinstance(self._boundaries, pints.RectangularBoundaries): self._boundary_transform = pints.TriangleWaveTransform( self._boundaries) elif self._boundaries is not None: self._manual_boundaries = True # Shorthands d = self._n_parameters n = self._population_size # Learning rates # TODO Allow changing before run() with method call self._eta_mu = 1 # TODO Allow changing before run() with method call self._eta_A = 0.6 * (3 + np.log(d)) * d ** -1.5 # Pre-calculated utilities self._us = np.maximum(0, np.log(n / 2 + 1) - np.log(1 + np.arange(n))) self._us /= np.sum(self._us) self._us -= 1 / n # Center of distribution self._mu = np.array(self._x0, copy=True) # Initial square root of covariance matrix self._A = np.eye(d) * self._sigma0 # Identity matrix of appropriate size self._I = np.eye(d) # Update optimiser state self._running = True
[docs] def name(self): """ See :meth:`Optimiser.name()`. """ return 'Exponential Natural Evolution Strategy (xNES)'
[docs] def running(self): """ See :meth:`Optimiser.running()`. """ return self._running
def _suggested_population_size(self): """ See :meth:`Optimiser._suggested_population_size(). """ return 4 + int(3 * np.log(self._n_parameters))
[docs] def tell(self, fx): """ See :meth:`Optimiser.tell()`. """ if not self._ready_for_tell: raise Exception('ask() not called before tell()') self._ready_for_tell = False # Manual boundaries? Then reconstruct full fx vector if self._manual_boundaries and len(fx) < self._population_size: user_fx = fx fx = np.ones((self._population_size, )) * float('inf') fx[self._user_ids] = user_fx # Order the normalized samples according to the scores order = np.argsort(fx) self._zs = self._zs[order] # Update center Gd = np.dot(self._us, self._zs) self._mu += self._eta_mu * np.dot(self._A, Gd) # Update xbest and fbest # Note: The stored values are based on particles, not on the mean of # all particles! This has the advantage that we don't require an extra # evaluation at mu to get a pair (mu, f(mu)). The downside is that # xbest isn't the very best point. However, xbest and mu seem to # converge quite quickly, so that this difference disappears. if fx[order[0]] < self._fbest: self._xbest = self._xs[order[0]] self._fbest = fx[order[0]] # Update root of covariance matrix Gm = np.dot( np.array([np.outer(z, z).T - self._I for z in self._zs]).T, self._us) self._A *= scipy.linalg.expm(np.dot(0.5 * self._eta_A, Gm))
[docs] def xbest(self): """ See :meth:`Optimiser.xbest()`. """ return self._xbest