Stochastic degradation model

class pints.toy.StochasticDegradationModel(initial_molecule_count=20)[source]

Stochastic degradation model of a single chemical reaction starting from an initial molecule count \(A(0)\) and degrading to 0 with a fixed rate \(k\):

\[A \xrightarrow{k} 0\]

Simulations are performed using Gillespie’s algorithm [1], [2]:

  1. Sample a random value \(r\) from a uniform distribution
\[r \sim U(0,1)\]
  1. Calculate the time \(\tau\) until the next single reaction as
\[\tau = \frac{-\ln(r)}{A(t) k}\]
  1. Update the molecule count \(A\) at time \(t + \tau\) as:
\[A(t + \tau) = A(t) - 1\]
  1. Return to step (1) until the molecule count reaches 0

The model has one parameter, the rate constant \(k\).

Extends pints.ForwardModel, pints.toy.ToyModel.

Parameters:initial_molecule_count – The initial molecule count \(A(0)\).

References

[1]A Practical Guide to Stochastic Simulations of Reaction Diffusion Processes. Erban, Chapman, Maini (2007). arXiv:0704.1908v2 [q-bio.SC] https://arxiv.org/abs/0704.1908
[2]A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Gillespie (1976). Journal of Computational Physics https://doi.org/10.1016/0021-9991(76)90041-3
interpolate_mol_counts(time, mol_count, output_times)[source]

Takes raw times and inputs and mol counts and outputs interpolated values at output_times

mean(parameters, times)[source]

Returns the deterministic mean of infinitely many stochastic simulations, which follows \(A(0) \exp(-kt)\).

n_outputs()

Returns the number of outputs this model has. The default is 1.

n_parameters()[source]

See pints.ForwardModel.n_parameters().

simulate(parameters, times)[source]

See pints.ForwardModel.simulate().

simulate_raw(parameters)[source]

Returns raw times, mol counts when reactions occur

suggested_parameters()[source]

See pints.toy.ToyModel.suggested_parameters().

suggested_times()[source]

See “meth:pints.toy.ToyModel.suggested_times().

variance(parameters, times)[source]

Returns the deterministic variance of infinitely many stochastic simulations, which follows \(\exp(-2kt)(-1 + \exp(kt))A(0)\).